177 research outputs found

    Machine Learning and the Future of Realism

    Get PDF
    The preceding three decades have seen the emergence, rise, and proliferation of machine learning (ML). From half-recognised beginnings in perceptrons, neural nets, and decision trees, algorithms that extract correlations (that is, patterns) from a set of data points have broken free from their origin in computational cognition to embrace all forms of problem solving, from voice recognition to medical diagnosis to automated scientific research and driverless cars, and it is now widely opined that the real industrial revolution lies less in mobile phone and similar than in the maturation and universal application of ML. Among the consequences just might be the triumph of anti-realism over realism

    Combining Functional Data Registration and Factor Analysis

    Full text link
    We extend the definition of functional data registration to encompass a larger class of registered functions. In contrast to traditional registration models, we allow for registered functions that have more than one primary direction of variation. The proposed Bayesian hierarchical model simultaneously registers the observed functions and estimates the two primary factors that characterize variation in the registered functions. Each registered function is assumed to be predominantly composed of a linear combination of these two primary factors, and the function-specific weights for each observation are estimated within the registration model. We show how these estimated weights can easily be used to classify functions after registration using both simulated data and a juggling data set.Comment: The paper was updated with a better real data exampl

    Asymptotic Properties for Methods Combining Minimum Hellinger Distance Estimates and Bayesian Nonparametric Density Estimates

    Get PDF
    In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficienty when the parametric model is correct. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density from a random histogram prior; the other induces a posterior over parameters through the posterior for the random histogram. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramer-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator indicating that it's posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold
    • …
    corecore